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Abstract 

In this competitive digital era with millions of products and services-based 

companies in the market, most of the businesses try hard to survive and gain a 

competitive advantage over others. Every company needs a marketing strategy 

which provides them an edge over other companies in the market. To have a 

strong edge over the other companies and to have a great marketing strategy it 

is essential for a product/services providing company to understand their 

customers and understand how they feel, think, reason, and select between 

different products and services available in the market. By better understanding 

its customers and their purchasing behavior, a company can increase its digital 

presence, improve user experiences, predict how customers will respond to its 

marketing strategies, retain loyal customers, develop/enhance marketing 

strategies to create new consuming markets, and increase sales revenue. The 

purpose of this research project is to investigate the buying behavior of mid-west 

tool manufacturing company’s customers to enable it to become one of the top 

brands in terms of providing woodworking plans and products in the market. The 

data analysis conducted on customer data collected through the company’s 

websites enabled understanding of the type of customers interested in buying its 

products, the kind of woodworking projects customers look for, the kind of tools 

and products (in terms of clamping, joining, routing, cutting, or measuring) they 

are interested in, the popular channels and sources directing customers to its  

websites, the type of customers who are likely to purchase its products and the 

factors contributing towards these consumer purchases. This research project 

also focusses on predicting whether a targeted customer will buy the company’s 

product or not if the company provides him/her with some special offers. 

Machine learning models were built using classification techniques: Logistic 
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Regression, Support Vector Machine, K-Nearest Neighbor, Decision Tree, Naïve 

Bayes, and Random Forest to predict customer purchases when given an offer 

and a comparison of these models was done to choose the best model to predict 

customer purchase behavior. Confusion matrices and prediction accuracy were 

used to evaluate the performance of the classifier on the test sample. The 

demographic variables such as age and annual salary played an important role 

in predicting whether the customer will buy a product or not if given an offer. 

The developed dashboards and models as part of this research project will enable 

the executives at mid-west tool manufacturing company to make informed 

decisions about the company’s future growth. Overall, this project analyzed the 

what, where, when, and how customers buy the company’s products. 
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1. Introduction 

Due to the proliferation of information systems and technology, although 

organizations are increasingly gathering huge amounts of data, they are still 

not able to unleash the power behind the data to its full potential. In today’s 

competitive market, where there are multitudinous products available, 

businesses need to understand their customers before developing marketing 

strategies to have a competitive advantage over others. It is critical to 

understand customers and the factors that motivate customers to make 

purchases, to satisfy the needs of the customers, and to retain existing 

customers and expand the market towards prospective customers. To target 

potential customers and retain the existing customers, it is imperative to 

understand how customer think, reason, feel, and make purchasing decisions 

when selecting a product from a wide range of alternatives available in the 

market (Bala, 2010). A better understanding of customers usually helps 

managers in establishing better marketing campaigns (Song, Kim, & Kim, 

2001). Consumer behavior is the study of what, where, when, and how a 

consumer buys or do not buy a product/service. The customer's shopping 

information such as frequency of purchasing, products purchased, etc. and 

demographic information such as salary, age, gender, etc. are the important 

inputs used in data mining of purchasing behavior of the customers (Bala, 

2010). Customer demographic attributes are primarily applied by most of the 

customer behavior studies to analyze customer buying behavior (Song et al., 

2001). Since mid-west tool manufacturing company collects a huge amount 

of data about its customers and that data has not been used to its full potential, 

this project will enable it to unleash the power behind their customer data and 

will help them to increase customer reach, retain existing customers, and 
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improve products placement. Analysis of available customer data will help c-

suite executives at mid-west tool manufacturing company take informed 

decisions related to the company’s future growth and market expansion. If we 

see the problem on an abstract level, the bigger picture shows that it is related 

to some of the phases of customer relationship management (Ngai, Xiu, & 

Chau, 2009):  

Finding Customers: (Customer Acquisition): This phase consists of gathering 

and collating data about company’s customers through the online transactions 

and the sales data, online buying behavior logs, customer data etcetera and 

analyze it to determine the characteristics of existing customers and 

characteristics of prospective customers and perform customer segmentation 

based on similar traits between customers. Through this analysis, we will be 

able to know how and what type of customers buy the company’s products. 

The collected data can be used to create customer profiles based on which the 

marketing team can decide on the right business strategies and tactics to meet 

customer needs (Shaw, Subramaniam, Tan, Welge, 2001) which will help it 

to improve customer reach and products placement. The analysis results will 

help the marketing team to target these identified customers so that they do 

not switch to other competitive brands to satisfy their needs. To acquire 

customers and expand existing market presence, it is vital to know our existing 

customers. Collected customer details like age, sex, education, marital status, 

employment, annual salary, social media behavior, and hobbies help us in 

narrowing down the collected customer details regarding and provide aid in 

creating customer profiles for our existing customers. Customer Support team 

and their existing conversations with customers can help us to gather data 

about the customers. 
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Getting found by the customers (Customer Attraction):  

The primary focus of this phase is to attract the targeted customers identified 

in the previous phase through various direct marketing techniques such as 

emails or coupons (Ngai, Xiu, & Chau, 2009).  

Retaining the existing customers (Customer Retention): With increasing 

complexity and competition in today’s business, organizations need to have 

innovation in the work they do and the services they provide to capture 

customer needs and improve customer satisfaction and retention (Khajvand, 

Zolfaghar, Ashoori, & Alizadeh, 2011). Getting to know how many existing 

customers are satisfied with the products/services a company offers and which 

kind of customers come back again to purchase company’s products is very 

important because repeated patronage of a supplier is closely related to 

repeated buying behavior variable and brand-loyalty (Hennig-Thurau, Klee, 

1997). In this phase, the primary focus would be re-targeting and re-engaging 

the existing customers whose data we have collected and analyzed in the 

previous phases. Customer retention may consist of the following elements: 

loyalty programs, one-to-one marketing, and complaints management (Ngai, 

Xiu, & Chau, 2009). To stand out in the market or to have a competitive edge 

over others, it is important to consider customer experience and engagement 

concept. All the companies provide customer service, and customers tend to 

get in touch with the firm when they need help or information with something, 

they are not able to figure out on their own. When a customer contacts a firm 

for seeking help, the experience he/she faces creates an impact on whether to 

continue buying products or services of a particular firm or not. Customer 

engagement is to take the customer service process up by a notch which can 

be done by following the below ideologies:  
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1. Actively seek and connect to the customers to find out needs and 

feedback.  

2. Include customer feedback in the action plans and in the process of 

reforming the products.  

3. Provide multiple channels for customers to reach the company. 

The customer can find similar business services in the current competitive 

market, however; if the experience is unique and the engagement part is taken 

care, it can help in transitioning the existing customer into a loyal customer. 

Expanding the existing market (Customer Development): 

This phase consists of expanding the intensity of transactions, transactional 

value, and profit obtained by individual customers (Ngai, Xiu, & Chau, 2009). 

Techniques of customer development include market basket analysis, up-

selling, customer lifetime value analysis, cross-selling (Ngai, Xiu, & Chau, 

2009). 

Based on the business requirements and characteristics of data, our primary 

focus is to identify the manufacturing company’s customers that is to get to 

know the characteristics of manufacturing company’s customers and help the 

company in optimizing their marketing campaigns by building classification 

models to predict if given an offer to existing customers whether they will buy 

a company product or not provided that demographic data such as age and 

salary about the company’s customers are known by the company’s marketing 

team. 

Some of the problems that are addressed as part of this project will be: 
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• How do customers find mid-west tool manufacturing company’s 

woodworking plans, tools, and products? 

• What are the most popular sources for purchasing the company’s 

products? 

• Do the existing customers come back after purchasing products 

from the company? 

• What are the most popular mediums directing customers to 

company’s products and tools? 

• What role do personal or demographic factors play in purchase 

decisions? 

• Which type of customers are the most likely to buy the company’s 

product when given an offer? 

• Which type of customers are least likely to buy the company’s 

product when given an offer? 

 

2. Literature Review: 
 

In today’s competitive market, where there are numerous products available 

for every category, it has become essential for companies to improve and 

optimize the shopping experiences of customers. Companies are striving 

every day to optimize their marketing strategies by better understanding the 

needs and wants of their customers and analyzing their purchasing patterns to 

provide an excellent shopping experience so that the consumers do not feel 

like switching between brands and remain loyal to using their preferred 

brands. It has become essential for organizations to identify their customer 

segments and track their changes over time to understand their customer 
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expectations (Bottcher, Spott, Nauck, & Kruse, 2009). To understand their 

customers, it has become vital for organizations to collect as much 

information as possible about the customers and their business interactions, 

analyze this collected information, develop insights, and learn from it and take 

appropriate actions (Bottcher, Spott, Nauck, & Kruse, 2009). There has been 

a tremendous amount of research done in analyzing customer buying behavior 

or mining customer changes in customer behavior. Customer behavior 

analysis can be seen as a part of analytical customer relationship management 

(Ngai, Xiu, and Chau, 2008). Data mining tools and techniques can be used 

to discover hidden patterns behind huge amounts of customer data collected 

by most of the organizations. One or more types of modeling can be performed 

by each data mining technique such as Association, Clustering, Classification, 

Regression, Forecasting, Visualization, Sequence Discovery (Ngai, Xiu, & 

Chau, 2009) and numerous machine learning methods are available for each 

data mining models such as Logistic Regression, Association rule, K-Nearest 

Neighbor, Decision tree, Neural Networks etc.  

With massive amounts of data collected and stored everyday about customers 

(customer profiles, transactions, and sales data); most of the organizations feel 

that they are not able to unleash the power behind this collected data and are 

becoming interestingly interested in mining association rules behind this 

collected data (Song et al., 2001) as they believe proper analysis of this data 

can help develop insights into their customers. Bottcher, Spott, Nauck, & 

Kruse (2009) proposed a system for customer segmentation, which is based 

on the discovery of frequent itemsets and analysis of their change over time. 

In Song, Kim, & Kim (2001) association rule mining was mainly used to 

discover meaningful and useful patterns from the customer transaction 

databases. Song, Kim, & Kim (2001) devised a methodology to automatically 
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detect changes from customer profiles and sales data collected over periods. 

The authors defined three types of changes: Unexpected change, Emerging 

pattern, and the Add/perished rule and developed similarity and difference 

measures for rule matching to detect all types of changes. By using the degree 

of change, they determined the significantly changed rules. Bala (2010) also 

defined four types of patterns in purchase behavior: Emerging, Perished, 

Added, and Unexpected patterns but his research was mostly focused on 

change mining on the other products purchased by the shoppers, i.e., finding 

patterns in the products in conditional part through association-rule mining.  

However, Changchien, & Lu (2001) proposed an approach of performing 

clustering along with association rules extraction in data mining tasks by 

integrating a neural network SOM and rough set theory into clustering and 

rule extraction modules thus, helping the company to perform customer or 

product segmentation, one-to-one on-line marketing and analyzing customer 

favorites.  

Huang (2012) proposed a new change mining model named MineFuzzChange 

in his research paper [8] which focuses on mining purchasing logs in a 

dynamic market context to detect changes in fuzzy-time interval sequential 

patterns thus, helping managers in a better understanding of changing 

behaviors of their customers. This technique was proposed for formulating 

effective, timely marketing and inventory strategies, since if the knowledge is 

not updated by the managers based on time-trends, then fuzzy time-interval 

methods will not be useful to mine changes in customer behavior changes 

(Huang, 2012). A time-interval sequential pattern usually causes sharp 

boundary problem (when time-interval is near the boundary of two adjacent 

ranges) (Huang, 2012) but fuzzy time-interval sequential patterns adequately 

tackle such kind of problems; however, it fails to consider customer 

https://www.sciencedirect.com/science/article/pii/S0957417401000173?via%3Dihub#!
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behavioral changes in rapidly changing electronic commerce environments. 

Hence, MineFuzzChange was proposed to detect changes in fuzzy time-

interval sequential patterns. 

Furthermore, to help managers in developing effective marketing strategies, 

Chen, Chiu, & Chang (2005) proposed a methodology of integrating customer 

behavior variables (recency, frequency and monetary), demographic variables 

and transaction databases to mine changes in customer behavior. The authors 

developed improved modified measures of similarity and unexpectedness for 

mining changes in customer behaviors at different time snapshots to remove 

the limitations of the designed measures of similarity and unexpectedness by 

Song et al. (2001) which could only analyze patterns with a single attribute on 

the right-hand side of an association rule. The methodology defined by Bala 

(2010) was also limited to analyzing only a single item in the consequent parts. 

Zhang, & Zhang (2007) developed an agent-based model of consumer 

purchase decision making using multi-agent simulation (MAS) to exhibit the 

emergent decoy effect phenomenon to cope with the real-time changes and 

complexities in the real-world market. The authors combined consumer 

psychological personality traits with two interactions: the agent (customer) 

and brand managers interaction and interaction between consumer agents. 

 

3. Project Methodology: 
The primary focus of this project is to enable the mid-west tool manufacturing 

company in better understanding their existing customers and potential 

customers. The marketing team at the company is already using certain 

marketing techniques to target existing customers and motivate them towards 

buying the company’s products. The mid-west tool manufacturing company 
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and the third-party outsourced companies which provide services to 

company’s customers have been collecting huge amounts of customer data. 

The Marketing department at the company now aims to optimize their existing 

marketing strategies by better understanding their customer’s needs and 

wants, so that company’s brand becomes the top brand in the market in terms 

of offering woodworking plans and tools. Using the existing customers’ 

demographic data such as age, salary, and gender, the marketing team wants 

to know that if given an offer to these customers, will they buy the company’s 

product or not. Based on the characteristics of available data about the 

customers, the data mining technique which we will be used to predict if given 

an offer whether the customer will buy the company’s product or not is 

classification. Moreover, for analyzing the customer data collected through 

the company’s websites, web analytics tools such as Google Analytics is used 

to get a better understanding of the company’s customers and their purchasing 

characteristics. Through the data collected we develop web analytics 

dashboards which help us in creating customer profiles based on which the 

marketing team can decide on the right business strategies and tactics to meet 

customer needs and target existing and potential customers (Shaw, 

Subramaniam, Tan, Welge, 2001) which will basically help the company to 

improve customer reach and products placement. Some of the analysis which 

was done on the collected company’s websites data is as follows:  

The following figure shows the weekly trend of the number of users visiting 

the company’s websites: 
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Figure 1- Weekly Trend of Tool Manufacturing Company’s Users this year   

The following column chart shows the age distribution of the company’s 

customers: 

               

Figure 2- Age distribution of Tool Manufacturing Company’s Customers 

 

The following pi-chart shows the gender distribution of the company’s 

customers: 
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Figure 3- Gender distribution of Tool Manufacturing Company’s Customers 

 

The following table shows the top four channels and the number of customers 

they direct to the mid-west Tool Manufacturing Company: 

Channel Users 

Referral 1,393,470 

Social 1,051,750 

Direct 553,830 

Organic Search 323,380 

Table 1- Top 4 channels directing customers 

 

The following table shows the top five sources among the referral channel and 

the number of customers they direct to mid-west Tool Manufacturing 

Company: 

Source Users 

email.kregtool.com 758,481 

 

kregtool.com 

260,445 
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homemadebycarmona.com 56,576 

hertoolbelt.com 53,392 

 

thebalance.com 

 

48,143 

Table 2- Top 5 referral sources directing Customers 

 

The following table shows the top five sources among the social channel and 

the number of customers they direct to mid-west Tool Manufacturing 

Company: 

Source Users 

Pinterest 897,233 

Facebook 97,107 

Instagram 29,474 

YouTube 10,425 

StumbleUpon 6,514 

Table 3- Top 5 social sources directing Customers 

 

The following table shows the top five sources among the direct channel and 

the number of customers they direct to mid-west Tool Manufacturing 

Company: 

Source Users 

 

https://www.buildsomething.com/ 

 

93,699 

https://www.buildsomething.com/plans

/PC5F98F92F899D3B7/FarmhouseXB

aseTable 

53,177 

https://www.buildsomething.com/plans/PC5F98F92F899D3B7/FarmhouseXBaseTable
https://www.buildsomething.com/plans/PC5F98F92F899D3B7/FarmhouseXBaseTable
https://www.buildsomething.com/plans/PC5F98F92F899D3B7/FarmhouseXBaseTable
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https://www.buildsomething.com/plans

/list 

 

52,549 

 

https://www.buildsomething.com/sign-

in 

 

23,268 

 

https://www.buildsomething.com/plans

/PCCE4E032F1E474F8/ModernFarmh

ouseSquareCoffeeTable 

 

12,029 

Table 4- Top 5 direct sources directing Customers 

 

 

The following table shows the top five sources among the organic search 

channel and the number of customers they direct to mid-west Tool 

Manufacturing Company: 

Source Users 

Kreg tool 313,006 

Build something 531 

Buildsomething.com 448 

Amazon 383 

Wood plans 207 

Table 5- Top 5 organic search sources directing Customers 
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The following heat-map shows the top channels (referral, social, direct, 

organic search) and the number of customers they direct to mid-west Tool 

Manufacturing Company: 

 

Figure 4- Channels and customer distribution 

 

The following chart shows the new versus returning visitors to the company’s 

websites: 

New Visitors: 3,157,928 

Returning Visitors: 823, 946 
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Figure 5- New versus Returning Customers 

In this competitive market, where there are multitudinous products and 

services available, deeper understanding of customers and their 

characteristics and behaviors can help an organization to maximize its 

customers’ value. Hidden characteristics of customers and their 

behaviors can be extracted from large databases using several data 

mining techniques (Ngai, Xiu, & Chau, 2009). One or more types of 

modeling can be performed by each data mining technique such as 

Association, Clustering, Classification, Regression, Forecasting, 

Visualization, Sequence Discovery (Ngai, Xiu, & Chau, 2009). 

To help the marketing team at mid-west Tool Manufacturing Company, 

classification technique has been used to model the problem of 

predicting whether a customer purchases the company’s product or not 
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if given an offer by the company. Using the customer purchases 

information collected by marketing offers and directing ads to the 

customers, the goal is to determine whether the customer will buy 

company’s product or not if an offer is given to the customer.  

Classification techniques such as Logistic Regression, K-Nearest 

Neighbor, Support Vector Machine, Decision Tree, and Random Forest 

are used to build models on a sample of collected customer data to 

predict customer purchases. 

 

DATASET: There are three independent variables in the dataset about 

marketing ads targeted towards the tool manufacturing company’s 

customers which are gender, age, and salary and the dependent variable 

is purchase (Purchased company’s product or not).  

LIBRARIES USED:  

Three essential libraries have been used throughout the project to build 

the machine learning models, which are: numpy, matplotlib, pandas, 

sklearn.  

Numpy: This is a library which is needed to include any kind of 

mathematics in our code. This contains mathematical tools. 

Matplotlib: This library is used to plot charts and visualizations.  

Pandas: This library is used to import and manage datasets. 

Sklearn: This library contains libraries which are used to create 

machine learning models. 
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DATA PREPROCESSING 

A matrix of features was created that is a matrix of three independent 

variables: gender, age, salary was created, and then a dependent 

variable vector was created. 

 

• Imputing Missing Values: It is common for customer datasets to have 

missing values. In this collected dataset, the age values were missing 

for some of the customers, and for some customers, the salary values 

were missing. The mean of all the values in the column that contained 

the missing data, (i.e., for the missing age values, mean of all age values 

in the age column) was taken to fill in the missing age values — using 

the imputer pre-processing class provided by the scikit-library the 

missing values were imputed.   

• Encoding Categorical Data: The dataset consisted of two categorical 

variables. First is the gender variable, which included two categories: 

male and female, and the second variable is the purchased variable, 

which included two categories that are yes or no. It was important to 

encode these categorical variables since the machine learning models 

are based on mathematical equations. Hence, categorical data cannot be 

fed into the mathematical equations. The LabelEncoder class was used 

to encode labels with values. This class is used to encode labels with 

values between 0 and n_classes-1. 

• Splitting data into Training and Test Sets: The data was split into 

training and test sets. The training set is the dataset on which the 

machine learning model is build and test set is the dataset on which the 

performance of the built machine learning model is tested to get an idea 

of how well the machine learning model understood the data. The 
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machine learning model is built on the training set by establishing some 

correlations between the independent variables and the dependent 

variable and once the machine learning understands the correlations 

between independent variables and the dependent variable, then it is 

tested to see whether it is able to predict customer purchases if an offer 

is given to the customer. The train_test_split class is used to split the 

dataset into a training set and testing set. 

• Feature scaling: The Age and Salary attributes in the dataset were 

feature scaled since they were not on the same scale, which could have 

caused a problem while building the machine learning model. The 

salary had a much wider range of values hence the Euclidean distance 

will be dominated by the salary attribute leading to incorrect predictions 

hence, it was essential to perform feature scaling to transform the two 

attributes so that they are in the same range and the same scale. The 

standardization technique was used to feature scale the two variables 

age and salary. The StandardScaler class is used to perform feature 

scaling. 

 

Classification techniques used to build machine learning models are 

described as follows: 

 

3.1  Logistic Regression: 

Logistic Regression is a predictive analysis technique. It is a linear 

classifier which is used to describe the data and explain the 

relationship between a single dependent variable and one or more 

independent variables by predicting the probability or likelihood.  
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The mid-west tool manufacturing company sends offers to 

individual customers and wants to know if given an offer; the 

customers will purchase the company’s product or not? So, the 

logistic regression model is used to predict the probability or 

likelihood of a customer taking up an offer (purchasing company’s 

product) given that customer’s age and salary is known by the 

company.  

Using the built model, the following questions can be answered: 

•  Which customers are the most likely to take up the 

offer? 

• Which customers are least likely to take up the offer? 

 

  

Figure 6- Training set results (Logistic Regression) 

 

From the above figure, it can be seen that much of the customers 

who are young with low salaries did not buy company’s product 
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when given an offer, but customers who were young with little high 

salaries bought products when given an offer. Moreover, most of 

the customers who are old and have low salaries as well as the 

customers who are old and have high salaries bought a product 

when given an offer.   

From this, it can be seen that the marketing campaign can be 

optimized by targeting offers to the customers in the grey region. 

 

 

Figure 7- Test set results (Logistic Regression) 

So, with the test set results, it can be seen that Logistic Regression 

predicts correctly most of the data points. 

 

 

       Table 6- Confusion Matrix (Logistic Regression) 
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From, the above confusion matrix, it can be seen that Logistic 

Regression predicted only 11 incorrect values but rest all values 

were predicted correctly that means that the Logistic Regression 

classifier did perform reasonably well. 

 

3.2  K-Nearest Neighbor: 

K-Nearest Neighbor is a non-linear classifier. This classifier 

follows the following steps to correctly categorize the given data: 

1. Chooses the number of K neighbors 

2. Takes the K nearest neighbors of the new data point, 

according to Euclidean distance. 

3. From among the K neighbors, it counts the number of data 

points in each category and finally assigns the new data point 

to the category where it counted the most neighbors. 

 

 

 Figure 8- Training set results (K-Nearest Neighbor) 
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From the above figure, it can be seen that the prediction/decision 

boundary used by the K-NN did a great job in properly classifying 

most of the customers. The customers whose age was above average 

and salary below average were predicted accurately that means 

these customers will buy a product if given an offer.  

 

Figure 9- Test set results (K-Nearest Neighbor) 

From the above figure, it can be seen that most of the blue points 

(customers who did not buy a product when given an offer) are in 

the right region, and most of the grey-points (customers who bought 

a product when given an offer) are in the right region.  

That means that the classifier is able to correctly predict most of the 

customer purchases. There were some incorrect predictions because 

the classifier prevented over-fitting. 
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Table 7- Confusion Matrix (K-Nearest Neighbor) 

From, the above confusion matrix, it can be seen that K-NN 

classifier predicted only seven incorrect values but rest all values 

were predicted correctly that means that this classifier performed 

better than the Logistic Regression classifier. 

 

3.3  Support Vector Machine: 

Support Vector Machine is a classification technique which tries to 

find an optimal hyperplane which can correctly categorize the given 

labeled data. The learning of hyperplane can be linear or non-linear 

depending upon what type of kernel value is fed to the classifier. In 

this case, we have assumed that the data is linearly separable that is 

the kernel value is linear.  
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Figure 10- Training set results (Support Vector Machine) 

From the above figure, it can be seen that the visualization obtained 

for the training set results is similar to logistic regression in case of 

support vector machine with a linear kernel. 

 

 

Figure 11- Test set results (Support Vector Machine) 
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The test set results, in case of support vector machine with a linear 

kernel, are also mostly similar to Logistic Regression. 

 

 

Table 8- Confusion Matrix (Support Vector Machine) 

From, the above confusion matrix, it can be seen that the Support 

Vector Machine with a linear kernel predicted only ten incorrect 

values. That means that the classifier did not perform better than the 

K-Nearest neighbor, which only predicted seven incorrect values. 

 

3.4  Kernel Support Vector Machine (Support Vector machine with a non-linear 

kernel): 

Support Vector Machine is a classification technique which tries to 

find an optimal hyperplane which can correctly categorize the given 

labeled data. The learning of hyperplane can be linear or non-linear 

depending upon what type of kernel value is fed to the classifier. In 

this case, we have assumed that the data is not linearly separable 

that is the kernel value is non-linear. There are various types of 

Kernel functions: Gaussian RBF Kernel, Sigmoid Kernel, 

Polynomial Kernel. In this case, the RBF kernel has been used to 

elevate the data to a new dimension because of the assumption that 

data is not linearly separable. 
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Figure 12- Training set results (Support Vector Machine (Non-linear 

kernel)) 

From the above figure, it can be seen that the prediction/decision 

boundary used by the support vector machine with a non-linear 

kernel did a great job in properly classifying most of the customers. 

The customers whose age was above average and salary below 

average were predicted accurately that means these customers will 

buy a product if given an offer.  
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Figure 13- Test set results (Support Vector Machine (Non-linear kernel)) 

From the above figure, it can be seen that most of the blue points 

(customers who did not buy a product when given an offer) are in 

the right region, and most of the grey-points (customers who bought 

a product when given an offer) are in the right region. That means 

that the classifier is able to correctly predict most of the customer 

purchases. 

 

 

Table 9- Confusion Matrix (Support Vector Machine (Non-linear 

Kernel)) 
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The number of incorrect predictions for Kernel Support Vector 

Machine is seven, which is better than Support Vector Machine 

with a linear kernel. With Logistic Regression and Support Vector 

Machine with a linear kernel, we had a straight line separating the 

two categories, which is not the case with a non-linear classifier. 

The Support Vector Machine with a non-linear kernel jumps to a 

higher dimensional space to find linear boundary hyperplane in this 

higher dimensional space and then it projects back this boundary 

into 2-dimensional space so that data is separable.   

 

3.5  Decision Tree: 

A decision tree is a classification approach which uses a divide and 

conquer method and follows a top-down approach to reach a 

conclusion or decision. There are two types of decision trees in data 

mining:  

• Regression Decision Tree: 

This type of decision tree is used when the predicted 

outcome/target variable can take continuous values. 

• Classification Decision Tree: This type of decision tree is 

used when the predicted outcome is a class, or the targeted 

variable can take a discrete set of values. 
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Figure 14- Training set results (Decision Tree) 

From the above figure it can, we can see that the prediction 

boundary is composed of only horizontal and vertical lines, it is 

trying to catch every single customer in the right category, but it is 

leading to overfitting. Hence, on new observations, it might lead to 

incorrect predictions. 
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Figure 15- Test set results (Decision Tree) 

From the above figure, we can see that; there are some blue regions 

in the grey region which are not capturing anything which is the 

result of overfitting. So, overall decision tree classifier is correctly 

predicting most of the customers, but it is leading to overfitting, 

which is not good.  

 

 

Table 10- Confusion Matrix (Decision Tree) 

From the confusion matrix, it can be seen that Decision Tree 

predicted nine datapoints incorrectly, which is better than earlier 

classifiers. 
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3.6  Naïve Bayes: 

Naïve Bayes is a probabilistic supervised machine learning 

classifier which is based on applying Bayes theorem with the 

“naive” assumption of conditional independence between the 

features given the value of the class variable. 

 

Figure 16- Training set results (Naïve Bayes) 

From the Training set results we can see that with Naïve Bayes 

classifier, we have a beautiful curve with fewer irregularities in 

comparison to Logistic Regression and K-Nearest Neighbor whose 

prediction boundaries contained a lot of irregularities and Naïve 

Bayes classifier manages quite well to capture all the customers 

with low estimated salaries who actually bought the product which 

the Logistic Regression and SVM couldn’t classify correctly 

because they were linear classifiers and their prediction boundary 

was a straight line. That means that the Naïve Bayes classifier is 

able to correctly predict most of the customer purchases. 
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Figure 17- Test set results (Naïve Bayes) 

From the Test set results we can see that most of the blue points 

(customers who did not buy a product when given an offer) were 

predicted correctly by the Naïve Bayes classifier because they 

ended up in the blue region and the same is with the grey-points 

(customers who bought a product when given an offer) were 

predicted correctly as they ended up in the grey region. 

 

 

Table 11- Confusion Matrix (Naïve Bayes) 
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The number of incorrect predictions for Naïve Bayes is ten, which 

is more than K-Nearest Neighbor, Support Vector Machine with 

the non-linear kernel, and Decision Tree. 

 

3.7  Random Forest: 

It is a popular ensemble learning method for building predictive 

models. It fits several decision tree classifiers on various sub-

samples of the dataset. The steps followed are as follows:  

Step 1: Pick at random K data points from the Training set. 

 Step 2: Build the Decision Tree associated with these K data 

points. 

 Step 3: Choose the number of Ntree of trees you want to build 

and repeat STEPS 1 and 2. 

 Step 4: For a new data point, make each one of your NTree tree 

predict the category to which the data points belongs, and assign 

the new data point to the category that wins the majority vote. 
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Figure 18- Training set results (Random Forest) 

From the Training set results, we can see that for each customer, 

there were ten decision trees which predicted whether the customer 

would buy a product or not when given an offer. Each of the ten 

trees make prediction yes/no whether the customer will buy a 

product or not and then there is a majority vote, i.e., random forest 

classifier counts the number of trees that voted yes that the customer 

will buy a product and counts the number of trees that voted no that 

the customer will not buy a product and then takes the prediction 

that was voted the most time. Most of the blue customers are well 

classified here, and most of the grey customers are well classified 

here. We can see that there are very less incorrect predictions here. 
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                      Figure 19- Test set results (Random Forest) 

From the Test set results, we can see that there was some overfitting 

which can be depicted from the blue region in the grey region. The 

blue region was made in the grey region to capture the blue 

customers (customers who did not buy the product) in the grey 

region, but unfortunately, this region in the test set contains some 

of the customers who bought the product. 

  

 

    Table 12- Confusion Matrix (Random Forest) 
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From the confusion matrix, it can be seen that we have only 

eight incorrect predictions incorrectly predicted by the Random 

Forest classifier. 

 

4. Evaluation and Comparison: 

From the above classifiers modeled to predict customer 

purchases, we can see that the best classifier that correctly 

predicted most of the customer purchases was the Kernel Support 

Vector Machine because for this classifier we had smooth 

boundaries and it did not have any overfitting. Also, with this 

classifier we had good accuracy with less number of incorrect 

predictions, but at the same time it was correctly able to predict 

the blue customers in the blue region properly (customer who did 

not buy a product) and the grey users in the grey region properly 

(customers who bought a product) without having irregular 

regions like in Random Forest as with Random Forest we had the 

problem of overfitting which actually let it not perform well for 

the new observations and also the kernel SVM was better than 

the linear classifiers like logistic regression and normal SVM 

because these linear classifiers were not able to correctly classify 

customers in different region, i.e. blue region and grey region in 

our case. 
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5. Discussion and Conclusion: 

Based on the above analysis it can be concluded that 

classification techniques such as Logistic Regression, K-Nearest 

Neighbors, Support Vector Machines, Kernel SVM, Decision 

Tree, and Random Forest can be used by the mid-west tool 

manufacturing company to model the problem of predicting 

customer purchases if given an offer by the company. However, 

with the current customer data classification technique: Kernel 

Support Vector Machines can be used by the mid-west tool 

manufacturing company to correctly predict customer purchases 

if given an offer by the company. Based on the current customer 

data supplied by the company Kernel, SVM performed the best 

in predicting the customer purchases when given an offer by 

using the customer demographic data such as age, salary, and 

gender. Moreover, Google Analytics can be used for analyzing 

the customer data collected through the company’s websites to 

get a better understanding of the company’s customers and their 

purchasing characteristics.  

Finally, I hope the above analysis will help the Marketing 

department at the company to optimize their existing marketing 

strategies by better understanding their customer’s needs and 

wants and will help them in better targeting their customers and 

become a top brand in the market in terms of offering 

woodworking plans and tools. 
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